Saturday, 12 March 2011


Thermodynamics describes the physics of matter using the concept of the thermodynamic system, a region of the universe that is under study. All quantities, such as pressure or mechanical work, in an equation refer to the system unless labeled otherwise. As thermodynamics is fundamentally concerned with the flow and balance of energy and matter, systems are distinguished depending on the kinds of interaction they undergo and the types of energy they exchange with the surrounding environment.
Interactions of thermodynamic systems Type of system     Mass flow     Work     Heat
Open     Green tickY     Green tickY     Green tickY
Closed     Red XN     Green tickY     Green tickY
Isolated     Red XN     Red XN     Red XN

Isolated systems are completely isolated from their environment. They do not exchange heat, work or matter with their environment. An example of an isolated system is a completely insulated rigid container, such as a completely insulated gas cylinder. Closed systems are able to exchange energy (heat and work) but not matter with their environment. A greenhouse is an example of a closed system exchanging heat but not work with its environment. Whether a system exchanges heat, work or both is usually thought of as a property of its boundary. Open systems may exchange any form of energy as well as matter with their environment. A boundary allowing matter exchange is called permeable. The ocean would be an example of an open system.

In practice, a system can never be absolutely isolated from its environment, because there is always at least some slight coupling, such as gravitational attraction. In analyzing a system in steady-state, the energy into the system is equal to the energy leaving the system [1].

An example system is the system of hot liquid water and solid table salt in a sealed, insulated test tube held in a vacuum (the surroundings). The test tube constantly loses heat in the form of black-body radiation, but the heat loss progresses very slowly. If there is another process going on in the test tube, for example the dissolution of the salt crystals, it will probably occur so quickly that any heat lost to the test tube during that time can be neglected. Thermodynamics in general does not measure time, but it does sometimes accept limitations on the time frame of a process.

No comments:

Post a Comment