Saturday 12 March 2011

Boundary

A system boundary is a real or imaginary volumetric demarcation region drawn around a thermodynamic system across which quantities such as heat, mass, or work can flow.[1] In short, a thermodynamic boundary is a division between a system and its surroundings.

Boundaries can also be fixed (e.g. a constant volume reactor) or moveable (e.g. a piston). For example, in an engine, a fixed boundary means the piston is locked at its position; as such, a constant volume process occurs. In that same engine, a moveable boundary allows the piston to move in and out. Boundaries may be real or imaginary. For closed systems, boundaries are real while for open system boundaries are often imaginary. A boundary may be adiabatic, isothermal, diathermal, insulating, permeable, or semipermeable.

In practice, the boundary is simply an imaginary dotted line drawn around a volume when there is going to be a change in the internal energy of that volume. Anything that passes across the boundary that effects a change in the internal energy needs to be accounted for in the energy balance equation. The volume can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a steam engine, such as Sadi Carnot defined in 1824; it can be the body of a tropical cyclone, such as Kerry Emanuel theorized in 1986 in the field of atmospheric thermodynamics; it could also be just one nuclide (i.e. a system of quarks) as hypothesized in quantum thermodynamics.

No comments:

Post a Comment